Real Analysis Qual, Fall 2018

Problem 1. Let f(x) = 1/x. Show that f(x) is uniformly continuous on $(1, \infty)$ but not on (0, 1).

Proof. Take $\epsilon > 0$. Choose M large enough such that for all $x \geqslant M$ we have $|f(x)| < \epsilon/4$. Since f(x) decreases monotonically to 0, such an M exists. Then, for all $x, y \geqslant M$, we have $|f(x) - f(y)| \leqslant |f(x)| + |f(y)| \leqslant \epsilon/4 + \epsilon/4 = \epsilon/2$. Now, f is a continuous function on the compact interval [1, M]. So, there exists $\delta > 0$ such that for all $x, y \in [1, M]$ satisfying $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon/2$. Suppose that $x \in [1, M]$ and $y \in [M, \infty)$ are such that $|x - y| < \delta$. Then,

$$|f(x) - f(y)| \le |f(x) - f(M)| + |f(M) - f(y)| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Therefore, f is uniformly continuous on $[1, \infty)$, and therefore uniformly continuous on $(1, \infty)$. On the other hand, for any $\delta > 0$, take $a < \delta$, and consider x, x + a. Then $|x - (x + a)| < \delta$. However,

$$\frac{1}{x} - \frac{1}{x+a} = \frac{x+a}{x(x+a)} - \frac{x}{x(x+a)} = \frac{a}{x(x+a)}.$$

Taking $x \to 0$ sends $\frac{a}{x(x+a)} \to \infty$. So, for any ϵ , there is no δ such that $|f(x) - f(y)| < \epsilon$ for all $|x - y| < \delta$ with $x, y \in (0, 1)$. Thus, f is not uniformly continuous on (0, 1).

Problem 2. Let $E \subseteq \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subseteq E$ such that $m(E \setminus B) = 0$.

Problem 3. Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) = \int_{-\infty}^{\infty} f(x) \cos(xt) dx.$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

Proof. Set $h(x,t) = f(x)\cos(xt)$. Observe that $|h(x,t)| \leq |f(x)\cos(xt)| \leq |f(x)| \leq L^1$ for all t. Moreover,

$$\left| \frac{\partial}{\partial t} h(x,t) \right| = |f(x)(-x\sin(xt))| \leqslant |f(x)x| \in L^1$$

for all t. Moreover, $F(t) = \int h(x,t) dx$. These are the necessary conditions for differentiation under the integral sign. In particular, we obtain

$$F'(t) = \int \frac{\partial}{\partial t} h(x, t) \, \mathrm{d}x = \int f(x) (-x \sin(xt)) \, \mathrm{d}x = -\int x f(x) \sin(xt) \, \mathrm{d}x.$$

Problem 4. (Classic) Let $f \in L^1([0,1])$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin(nx)| \, \mathrm{d}x = \frac{2}{\pi} \int_0^1 f(x) \, \mathrm{d}x.$$

Hint: Begin with the case in which f is the characteristic function of an interval.

Proof. We first integrate a single arc of the function $|\sin(nx)|$ along the interval $(0, \pi/n)$. So,

$$\int_0^{\pi/n} |\sin(nx)| \, \mathrm{d}x = \int_0^{\pi/n} \sin(nx) \, \mathrm{d}x = -\frac{\cos(nx)}{n} \Big|_0^{\pi/n} = \frac{2}{n}.$$

Consider an interval $(a,b) \subseteq (0,1)$. Say there are k complete arcs of $|\sin(nx)|$ over (a,b). There are an additional at most 2 fractional arcs terminating at a and b. Since each arc contributes $\frac{2}{n}$ to the integral by the above, then

$$k\frac{2}{n} \leqslant \int_{a}^{b} |\sin(nx)| \, \mathrm{d}x \leqslant (k+2)\frac{2}{n}.$$

Each arc has length π/n , so there are at most $\frac{n}{\pi}(b-a)$ complete arcs of $|\sin(nx)|$ over (a,b). Since k is an integer, there are at least $\frac{n}{\pi}(b-a)-1$ complete arcs of $|\sin(nx)|$. Therefore,

$$\left(\frac{n}{\pi}(b-a)-1\right)\left(\frac{2}{n}\right) \leqslant k\left(\frac{2}{n}\right) \leqslant \int_a^b |\sin(nx)| \, \mathrm{d}x \leqslant (k+2)\left(\frac{2}{n}\right) \leqslant \left(\frac{n}{\pi}(b-a)+2\right)\left(\frac{2}{n}\right).$$

Thus,

$$\frac{2(b-a)}{\pi} - \frac{2}{n} \leqslant \int_{a}^{b} |\sin(nx)| \, \mathrm{d}x \leqslant \frac{2(b-a)}{\pi} + \frac{4}{n}.$$

Taking $n \to \infty$ gives $\frac{b-a}{\pi} = \int_a^b |\sin(nx)| dx$. Observe now that if I = (a, b) is an interval, then

$$\lim_{I \to \infty} \int_{0}^{1} \mathbb{1}_{I} |\sin(nx)| \, \mathrm{d}x = \frac{2}{\pi} m(I) = \frac{2}{\pi} \int \mathbb{1}_{I} \, \mathrm{d}x.$$

So, for any step function ϕ , we obtain by linearity $\lim_{n \to \infty} \int_0^1 \phi |\sin(nx)| dx = \frac{2}{\pi} \int_0^1 \phi dx$. Take $f \in L^1([0,1])$. So, f may be arbitrarily approximated by step functions. Choose ϕ within ϵ of f. Then.

$$\left| \int_0^1 f|\sin(nx)| \, \mathrm{d}x - \frac{2}{\pi} \int_0^1 f \, \mathrm{d}x \right| = \left| \int_0^1 (f - \phi)|\sin(nx)| \, \mathrm{d}x + \int_0^1 \phi|\sin(nx)| - \frac{2}{\pi} f \, \mathrm{d}x \right|$$

$$\leqslant \epsilon + \left| \int_0^1 \phi|\sin(nx)| \, \mathrm{d}x - \frac{2}{\pi} \int_0^1 f \, \mathrm{d}x \right|$$

$$= \epsilon + \left| \int_0^1 \phi|\sin(nx)| - \frac{2}{\pi} \phi \, \mathrm{d}x + \frac{2}{\pi} \int_0^1 \phi \, \mathrm{d}x - \frac{2}{\pi} \int_0^1 f \, \mathrm{d}x \right|$$

$$\leqslant \epsilon + \left| \int_0^1 \phi|\sin(nx)| - \frac{2}{\pi} \int_0^1 \phi \, \mathrm{d}x \right| + \epsilon.$$

This holds for all ϵ . Taking $n \to \infty$ gives us $\int_0^1 f|\sin(nx)| dx \to \frac{2}{\pi} \int_0^1 f dx$.

Problem 5. (Classic) Let $f \ge 0$ be a Lebesgue Measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f \, \mathrm{d}m = \int_0^\infty m(\{x : f(x) > t\}) \, \mathrm{d}t.$$

This solution is valid, but not as good as the one for an almost identical Problem 4 in the Analysis, Spring 2019 qual

Proof. Define the function $g(t) = m(\{x : f(x) > t\})$. The claim is that $\int_{\mathbb{R}} f \, dm = \int_0^\infty g \, dm$. Now, first suppose that f is a simple function. Write $\sum_{j=1}^n a_j \mathbb{1}_{A_j}$ in standard form. We may index such that $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_n$. Then, for $t \in (a_k, a_{k+1}), g(t) = \sum_{j=k+1}^n m(A_j)$. Observe that

$$\int_{a_k}^{a_{k+1}} g(t) dt = \int_{a_k}^{a_{k+1}} \sum_{j=k+1}^n m(A_j) dt = (a_{k+1} - a_k) \sum_{j=k+1}^n m(A_j).$$

Therefore, identifying a_0 with 0, we have

$$\int_0^\infty g(t) dt = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} g(t) dt$$

$$= \sum_{k=0}^{n-1} \left((a_{k+1} - a_k) \sum_{j=k+1}^n m(A_j) \right)$$

$$= \sum_{k=0}^{n-1} \sum_{j=k+1}^n (a_{k+1} - a_k) m(A_j)$$

$$= \sum_{j=1}^n \sum_{k=0}^{j-1} (a_{k+1} - a_k) m(A_j).$$

The series $\sum_{k=0}^{j-1} a_{k+1} - a_k$ is telescoping, and thus equal to $a_j - a_0 = a_j$. Therefore,

$$\int_0^\infty g(t) dt = \sum_{i=1}^n \sum_{k=0}^{j-1} (a_{k+1} - a_k) m(A_j) = \sum_{i=1}^n a_i m(A_i) = \int f dm,$$

given that we assume f is a simple function.

Supose now that f is an arbitrary Lebesgue measurable nonnegative function. Take (ϕ_n) to be simple functions converging monotonically to f. Let g_n be the corresponding function $t \mapsto m(\{x:\phi_n(x)>t\})$. The g_n are also nonnegative functions. Moreover, $g_n \leq g_{n+1}$, for if x is such that $\phi_n(x) > t$, then $\phi_{n+1}(x) > t$ as well, and so $\{x:\phi_n(x)>t\} \subseteq \{x:\phi_{n+1}(x)>t\}$. So, then g_n are nonnegative and monotically increasing. Finally, we claim that $g_n \to g$. Observe that $\bigcup_{n=1}^{\infty} \{x \in \mathbb{R}:\phi_n(x)>t\} = \{x \in \mathbb{R}:f(x)>t\}$, for if f(x)>t, then there is some n such that $\phi_n(x)>t$. On the other hand, since $\phi_n(x) \leq f(x)$ for all n, then if $\phi_n(x)>t$, we have f(x)>t. Note that by monotonicity of the ϕ_n we have $\bigcup_{n=1}^k \{x \in \mathbb{R}:\phi_n(x)>t\} = \{x \in \mathbb{R}:\phi_k(x)>t\}$. Therefore,

$$m(\{x \in \mathbb{R} : f(x) > t\}) = m\left(\bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : \phi_n(x) > t\}\right) = \lim_{n \to \infty} m(\{x \in \mathbb{R} : \phi_n(x) > t\}).$$

Therefore, $g(t) = \lim g_n(t)$. Thus, by MCT, we have

$$\int f \, \mathrm{d}m = \lim \int \phi_n \, \mathrm{d}m = \lim \int g_n \, \mathrm{d}m = \int g \, \mathrm{d}m,$$

where the equality $\int \phi_n dm = \int g_n dm$, holds since each ϕ_n is simple.

Problem 6. (Classic) Compute the following limit and justify your calculations

$$\lim_{n \to \infty} \int_1^n \frac{1}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}} \, \mathrm{d}x.$$

Proof. We apply the binomial theorem and observe that since x is nonnegative the following inequality holds for all $n \ge 2$:

$$\left(1+\frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k \geqslant \binom{n}{2} \left(\frac{x}{n}\right)^2 = \left(\frac{n-1}{n}\right) \frac{x^2}{2} \geqslant \frac{x^2}{4}.$$

Therefore, $4x^{-2} \geqslant (1+x/n)^{-n} \geqslant (1+x/n)^{-n}(x)^{-1/n}$ for all $x \geqslant 1$ and $n \geqslant 2$. Observe moreover that $(1+x/n)^n \to e^x$ pointwise, and $\sqrt[n]{x} \to 1$ pointwise. Therefore,

$$\mathbb{1}_{[1,n]} \frac{1}{\left(1 + \frac{x}{n}\right)^n \sqrt[n]{x}} \to e^{-x}$$

pointwise. Finally, for all $x \ge 1$, we have

$$\int_{1}^{\infty} 4x^{-2} \, \mathrm{d}x = 4 \int_{1}^{\infty} x^{-2} \, \mathrm{d}x = 4 \left(-x^{-1} \Big|_{1}^{\infty} \right) = 4.$$

Thus, the improper Riemann Integral of $4x^{-2}$ is absolutely convergent, so its Lebesgue integral is finite, and thus the sequence of functions $\mathbb{1}_{[1,n]} \left(1 + \frac{x}{n}\right)^{-n} (x)^{-1/n}$ has an integrable dominant for $n \ge 2$. So, by DCT, we obtain

$$\lim_{n \to \infty} \int_{1}^{n} \frac{1}{\left(1 + \frac{x}{n}\right)^{n} \sqrt[n]{x}} \, \mathrm{d}x = \lim_{n \to \infty} \int_{(1, \infty)} \mathbb{1}_{[1, n]} \frac{1}{\left(1 + \frac{x}{n}\right)^{n}} \, \mathrm{d}m = \int_{1}^{\infty} e^{-x} \, \mathrm{d}x = \frac{1}{e},$$

completing the computation.